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Craniofacial anomalies, and in particular cleft lip and palate, are major
human birth defects with a worldwide frequency of 1 in 700 and
substantial clinical impact. A wide range of studies in developmental
biology has contributed to a better knowledge of how both genes and
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Craniofacial anomalies comprise a significant
component of morbid human birth defects. They
require surgical, nutritional, dental, speech, medi-
cal and behavioral interventions and impose a sub-
stantial economic burden (1). Clefts of the lip and
palate affect about 1/700 births with wide vari-
ability related to geographic origin (2) and socio-
economic status (3). In general, Asian or Amerind-
ian populations have the highest frequencies, often
at 1/500 or higher, with Caucasian populations in-
termediate, and African-derived populations the
lowest at 1/2500. There are many exceptions to
these summaries, however, with some particular
geographic areas having high frequencies thought
to be related to founder effects or environmental
triggers. The complex etiology of clefting affords
ample opportunities to identify genes and gene–
environment interactions and to learn more about
human embryology and its disturbances (4).

Fogh-Andersen (5) first defined genetic factors in
clefting, which have been confirmed by segregation
analysis (6). Genetics and embryology suggest that
clefts of the primary (hard) palate that involve the
lip and/or palate are different in mechanism from
clefts affecting only the secondary (soft) palate (7).
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Following these general rules, clefts are most often
discussed as either those that involve the lip with
or without the palate (CL/P) or those that involve
the palate only (CPO) (see Fig.1). In addition,
clefts can be divided into nonsyndromic and syn-
dromic forms. In nonsyndromic clefts, affected in-
dividuals have no other physical or developmental
anomalies. Most studies suggest that about 70% of
cases of CL/P and 50% of CPO are nonsyndromic
(8). The syndromic cases can be subdivided into
chromosomal syndromes, more than 350 Mendel-
ian disorders (Online Mendelian Inheritance in
Man, 2002), teratogens (e.g. phenytoin or alcohol)
and uncategorized syndromes.

Genetics

Advances in both quantitative and molecular
analysis make linkage and association approaches
to CL/P etiology practical (9). Animal models can
provide genes and loci for studies in humans and
can be used themselves to look at gene–gene and
gene–environment interaction. Dense genetic maps
(10) provide resources for family-based studies.
Studies of twins have been particularly informative
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regarding the genetics of clefting. Concordance in
monozygotic (MZ) twins ranges between 40% and
60%, and is 5% in dizygotic twins. The lack of
100% concordance in monozygotic twins suggests
that genetic events alone are not responsible for
the clefting phenotype. Either some degree of non-
penetrance, perhaps based around random devel-
opmental events, or the dissimilar environmental
effects found in what might not be a homogeneous
inutero environment must underlie this discor-
dance. Nonetheless, the greatly increased MZ con-
cordance does strongly support a major genetic
component.

Fig.1. Four children with unrepaired
facial clefts: (a) unilateral cleft lip only;
(b) unilateral cleft lip and palate; (c)
bilateral cleft lip and palate; (d) Van der
Woude syndrome with a lower lip pit
and bilateral cleft lip and palate.

249

Genetic linkage studies of CL/P have been
limited by insufficient numbers of families and
genotyping resources (11). Studies (12, 13) using
from one to 40 families suggest loci for clefts on
chromosomes4, 6, 17 and 19. Linkage has been
excluded at these same loci in other datasets. Only
loci on 6p have consistently shown linkage to CL/
P in Denmark (14), Italy (15, 16) and the UK (17).
One genome-wide screen has been carried out
using approximately 100 sib-pairs from the UK
(17). Although no highly significant loci were iden-
tified in this study, nine regions of interest were
confirmed in a 5-cm scan. Three of these (1p36,
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2p13 and 6p24) are near genes or loci suggested in
other studies (Table1). One region at 1p36 has at
least three genes of interest (SKI, P73 and
MTHFR) and deletions of 1p36 have an increased
frequency of clefting (47). Future studies involving
larger sets of families are likely to provide ad-
ditional power to use the genome-wide search ap-
proach.

Association studies have also been used exten-
sively to examine candidate genes in CL/P. Associ-
ation studies have the advantage over linkage in
that they use the large number of cases that occur
in isolation without affected relatives (48). In ad-
dition, association studies exploit a wealth of
literature in developmental biology that identifies
specific genes expressed during critical phases of
lip or palate formation (49). Ardinger et al. (50)
first reported a role for transforming growth factor
alpha (TGFA) as contributing to CL/P. Although
some studies have failed to replicate this associ-
ation, a recent meta-analysis supports a role for
TGFA as a modifying factor in cleft lip and palate
(51), as does expression-based analysis (52). Other
genes/loci showing association include D4S192,
MSX1, TGFB3, RARA, MTHRF, GABRB3 and
PVRL1, with the data summarized in Table1.
MSX1 is of particular interest in that a large pedi-
gree published by van den Boogaard et al. (53)
showed that a stop codon mutation in exon1 co-
segregated with the phenotype of cleft lip and/or
palate in multiple family members. Hypodontia
was also found in many affected family members,
which is consistent with previous evidence that
missense mutations in MSX1 can cause isolated
dental anomalies (54). This family provides strong
evidence that what appears to be nonsyndromic
clefting (if the dental anomalies are overlooked, as
might easily happen) can provide a candidate for
other nonsyndromic forms as well. In addition, it
suggests that mixed clefting types (CPO and CL/
P) can occur secondary to the same mutation.

Table 1. Gene linkage/association studies of clefts

Gene Locus Linkage LD/TDT Other data References

SKI/MTHFR 1p36 π π π / – CH 18, 19, 20, 21, 22, 23, 24, 25
TGFB2 1q41 – – / π KO/EXP 26, 27
TGFA 2p13 – π π / – EXP 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 50, 51
MSX1 4p16 π π π / – CH/KO/EXP 26, 40, 41, 42

4q31 π / – π / – CH/KO/EXP 43
6p23 π π / – – CH/KO 15, 16, 33

PVRL1 11q23 – π EXP 58
TGFB3 14q24 – π π / – KO/EXP 26, 27, 40, 41, 42
GABRB3 15q11 – π KO 27, 82
RARA 17q21 π / – π / – TG/EXP 29, 44
BCL3 19q13 π / – π / – CH 45, 46

Linkage disequilibrium/transmission disequilibrium test (LD/TDT); –, negative studies; π, one positive study; π π, more than one posi-
tive study; CH, chromosome deletion (recurrent) or translocation, mouse knockout (KO), transgenic (TG) or expression (EXP).
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Chromosomal anomalies can also provide im-
portant clues for genes involved in clefting. A com-
prehensive survey of chromosomal deletions (55)
and duplications (56) was done to identify pheno-
types significantly associated with particular par-
tial aneuploidies. Regions that were highly signifi-
cantly associated with clefts were identified at
1q25, 3p21, 4p15, 4q32 and 10p15. The 4p15 re-
gion is of particular note in that it contains the
MSX1 homeobox gene and is also the site of de-
letions causing the Wolf–Hirschhorn syndrome,
which is commonly associated with orofacial
clefting as well.

Several recent studies have also provided strong
evidence that syndromic forms of clefting may pro-
vide insights into genetic etiologies in nonsyn-
dromic forms. An autosomal recessive disorder,
Margarita Island Ectodermal Dysplasia and
Clefting syndrome, was shown to have mutations
in the PVRL1 gene (57). Recent evidence from this
group (58) suggests that heterozygotes for this
mutation may also have an increase in nonsyn-
dromic clefting. Although this study needs to be
replicated (59), it opens an exciting door into ad-
ditional genes and mechanisms for nonsyndromic
clefting. As PVRL1 is a cell adhesion molecule
with viral receptor homologies and additional
family members, these molecules would serve as
good candidates for investigation. Other disorders
in which apparent nonsyndromic clefting may
show up in extended pedigrees include the CPX
(60) and EEC syndromes (61). Mutations in the
P63 gene underlying EEC can occasionally be
found in individuals in whom an isolated cleft may
appear to be the only abnormality, and this is simi-
larly true of cleft palate only for TBX22 mutations
in CPX where the ankyloglossia may be mild or
overlooked. Finally, the Van der Woude syndrome
(VDWS), an autosomal dominant form of clefting
on the long arm of chromosome1 (62) in which lip
pits and hypodontia are the only additional anom-
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alies noted outside of isolated clefts of the lip or
palate, must always be a consideration in families
in which more than one individual is found with a
cleft. Nonpenetrance for the lip pit phenotype is
found in at least 10% of affected individuals and
those without the pits are phenocopies for nonsyn-
dromic clefting. VDWS also mimics the MSX1
mutations noted above in that isolated CPO and
CL/P occur in the same family, suggesting that the
VDWS gene may lie in the same developmental
program as MSX1.

Animal models

Many mouse mutants include clefts of the lip or
palate as part of the phenotype (Table2). For hu-
man nonsyndromic clefting the best candidates are
those in which clefts appear without other abnor-
malities, including Clf1 and Clf2. Two genome-
wide searches for susceptibility loci in the mouse
have been performed. One used the A strain de-
rivative A/WySn to identify (69) two loci for cleft
susceptibility – Clf1 and Clf2. A second scan used
teratogen susceptibility in the AXB/BXA inbred
strains (70) and identified 16 susceptibility regions,
including one containing Msx1. Random inser-
tions and targeted knockouts in the mouse have
now been generated for over 10years and more
than 40 of these are listed in the transgenic data-
bases as including cleft lip and/or palate. Although
transgene phenotypes initially seemed to support a
role for certain genes in cleft causation, it is now
apparent that clefts are a frequent end-point of
knockout and insertion experiments. For a gene to
be a strong cleft candidate requires not only a
clefting phenotype from the transgene but also that
normal gene expression includes a critical time and
tissue for lip and palate development. Four excel-
lent examples are the Msx1, Tgfb3, Tfap2a and

Table 2. Mouse models relevant to human clefting

Gene/locus Mouse/human Type Phenotype References
name chromosomal

location

Msx1 5/4p16 KO CP, D 71, 72
Tgfb3 12/14q24 KO CP, D 73, 74
Tgfb2 1/1q41 KO CP 63
Tfap2a 13/6p24 KO CL, CP, D 64
Ryk 9/3q22 KO CP 65
Lhx8 3/1p KO CP 122
Ski 4/1p36 KO CL, CP 66
Gabrb3 7/15q11 KO CP 81
Pax9 12/14q12 KO CP, D 67
Dlx2 2/2q24 KO CP, D 68
clf1 11/17q SM CL 69
clf2 13/5q or 9q SM CL 69

CL, cleft lip; CP, cleft palate; D, dental anomalies; KO, knockout; SM, spontaneous mutation.
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Gabrb3 in which gene expression supports their
role in craniofacial development and the knock-
outs result in clefts. These four are also supported
by genetic data summarized in Table1 for humans.

For Msx1, two independent knockouts (71, 72)
result in 100% cleft palate, and Msx1 is expressed
in developing craniofacial structures. In the case
of Tgfb3, two independent knockouts result in the
phenotype of cleft palate (73, 74). Expression data
(75, 76) and work showing that exogenous TGFb3
can induce palate fusion in the chicken (77), where
the palate is normally cleft (and TGFb3 absent),
further support a role for TGFB3 in clefting.
Knockouts of the retinoic acid-dependent tran-
scription factor Tfap2a resulted in extensive
craniofacial and other structural disruptions (78).
Chimeric knockouts for Tfap2a (64) suggest a
more specific role for Tfap2a in clefting. Tfap2a
also lies near the site of two balanced translo-
cations that have CL/P phenotype (79, 80). The
knockout of Gabrb3 has CP in a portion of ani-
mals and normal gross brain morphology but with
seizures and abnormal behavior (81). A recent
transmission disequilibrium test (TDT) study sug-
gests GABRB3 may play a role in human clefting
(82) and the association of clefting with functional
brain anomalies is consistent with recent human
studies of CL/P showing some cognitive deficits
not previously recognized and accompanied by
magnetic resonance imaging (MRI) differences
(83).

Environmental studies

An environmental component to clefting was rec-
ognized when Warkany et al. (84) associated nu-
tritional deficiencies with cleft palate. Recognized
teratogens that cause clefts include rare exposures,
such as phenytoin, valproic acid and Thalidomide,
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and also common environmental exposures, such
as maternal alcohol or cigarette use (85), herbi-
cides such as dioxin (86), and altitude (87). The
exposures are important in that they can suggest
metabolic pathways whose disruption may play a
role in the development of CL/P. Epidemiologic
studies support a role for environmental factors in
clefting, especially in regions of low socioeconomic
status (SES). In the Philippines, three studies (3,
88, 89) report incidences of CLP of 2/1000 in indi-
gent populations while complementary studies
show an incidence of 1.2/1000 in native Filipinos
living in areas of higher SES, including Manila
(89), Hawaii (90) and California (91). When SES
does not change through a geographic move, no
change in frequency was noted by Christensen
et al. (92). Thus, nutritional or toxic environmen-
tal exposures may contribute directly to as much
as one-third of cleft cases, and etiologies will be
most identifiable in indigent populations. A sum-
mary of some recent environmental studies is pre-
sented in Table3.

Gene–environment connections

Gene–environment interactions (103, 104) for non-
syndromic CL/P are summarized in Table4. TGFA
and smoking have been most widely studied, with
an interaction suggested but not confirmed. Pre-
liminary data also support interactions between al-
cohol, nutritional factors and the MSX1 and
TGFB3 genes in addition to TGFA. Alcohol in-
duces the fetal alcohol syndrome, which includes

Table 3. Environmental risks of clefting

Agent Selected references (both positive and negative)

Infections 42, 93
Smoking 42, 94, 95, 96, 97, 98
Alcohol 42, 96, 99, 100
Vitamins 101, 102, 113, 121

Table 4. Gene–environment interactions in cleft lip and palate

Gene/Environmental References

TGFA/Smoking 32, 35, 105, 106, 107
TGFA/Alcohol 106
TGFA/Vitamins 108
MSX1/Smoking 106, 109
MSX1/Alcohol 106, 109
TGFB3/Smoking 32, 106, 109
TGFB3/Alcohol 106, 109
RARA/Smoking 32
MTHFR/Vitamins 18, 20, 21, 22, 23, 24, 25
P450/Smoking 110
GST/Smoking 110, 111
EPHX1/Smoking 111
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clefts of the lip and/or palate as part of the pheno-
type. VitaminA and its congeners, such as Accut-
ane, are known to induce craniofacial anomalies
(112). Folate-metabolizing enzymes are candidates
based on preliminary (113) data that suggest that
folic acid supplementation can reduce the inci-
dence of clefting, but the data remain controversial
(114). Gene associations for methylene tetrahy-
drofolate reductase (MTHFR) based on work in
neural tube defects (115) are widely reported but
again with no consensus (Table4). Enzymatic
pathways that are candidates for variation-induced
clefting with common exposures include the genes
for alcohol, vitaminA, smoking by-products, and
folate metabolism.

Other risks include environmental estrogens or
dioxins, which bind to endogenous nuclear recep-
tors that also serve as transcription factors (116).
This activity is mediated through the aryl hydro-
carbon (Ah) receptor and the Ah receptor nuclear
translocator (ARNT) genes, which are expressed
in developing palate and have their expression al-
tered by dioxins. Dioxin and retinoic acids also al-
ter TGFB3 expression (117, 118), and there are
strong teratogenic effects of dioxins (119) and reti-
noic acid (120) in the mouse and possibly human
(86, 112). One path for gene–environment interac-
tions might involve environmental effects (alcohol,
dioxins, estrogens) mediated via the Ah–ARNT
and retinoic acid pathways and disturbing the criti-
cal role of TGFA or TGFB3 in lip and palate for-
mation.

Diagnosis and prevention

Studies of genes and environmental interactions
with orofacial clefting have started to provide in-
sights into better diagnosis and prevention. Preven-
tively, it is clear that avoiding common exposures
in pregnancy of smoking and alcohol is likely to
decrease the risk of having a child with a cleft.
Other drugs for medical treatment, particularly
anticonvulsant medications, need to be evaluated
carefully, as they pose risks to the fetus but need
to be balanced against the risk of withdrawal for
a mother affected with a seizure disorder. While
some particular environmental exposures may
have their risks enhanced by pharmacogenetic
variation identified in the mother or the fetus, we
have not yet reached the stage where these assays
can provide useful predictive information. With re-
spect to genetic diagnosis, it is clear that syndromic
evaluation needs to be carried out in great detail,
and in particular looking for evidence of the hypo-
dontia that may be associated with MSX1 muta-
tions or the lip pits associated with Van der Woude
syndrome, as well as the more apparent clinical



Gene/environment causes of cleft lip and palate

syndromes that cause clefting, needs to be a part
of any evaluation. We may soon be at the stage at
which molecular diagnosis of MSX1, the Van der
Woude syndrome gene, or other gene mutations
can provide useful data for recurrence risks. Fi-
nally, prevention may also benefit from maternal
nutritional supplementation, in particular with fo-
lic acid, vitamin B6 or other micronutrients (121).
Although the evidence for the use of folate or vit-
amin B6 is not yet confirmed, preliminary reports
support these efforts, and at a minimum, all
mothers should take the recommended prenatal
vitamins, beginning preconceptually and continu-
ing throughout pregnancy, which would include
400 mg of folic acid daily. Whether recurrences of
clefts can be reduced within families with a history
of clefting awaits the results of randomized clinical
trials.

It seems likely that over the next decade, specific
information regarding prevention using easily ma-
nipulable environmental agents, such as mi-
cronutrients, as well as far more explicit data
about the specifics of recurrence risks will be a rou-
tine part of practice. In parallel with these import-
ant clinical advances, our understanding of the bi-
ology of clefting is also increasing at a dramatic
rate, and we will soon be at the time when our
understanding of craniofacial structure develop-
ment has a sound, biological basis.
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